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U N S T E A D Y  N O N L I N E A R  P R O B L E M  OF T H E  H O R I Z O N T A L  M O T I O N  

OF A C O N T O U R  U N D E R  T H E  I N T E R F A C E  B E T W E E N  TWO L I Q U I D S  

S. I. Gorlov UDC 532.59 

A method of solving the initial boundary-value problem of the horizontal motion of a circular 
cylinder under the interface between two liquids is developed within the framework of nonlinear 
theory and implemented numerically. Profiles of generated waves and hydrodynamic loads are 
calculated for the problem of the acceleration of a circular cylinder under the free surface of a 
heavy liquid. The phenomenon of wave breaking is considered in detail. 

Unsteady nonlinear problems of the generation of surface and internal waves by a body moving in a 
liquid are the subject of extensive research. This interest in these problems is motivated by the possibility of 
modeling complex wave flows and solving a number of practical problems. In particular, the solution of the 
problem of the acceleration of a contour at the interface of media in a complete nonlinear formulation allows 
one to investigate breaking of waves behind the body. Advances in this area are related to the development of 
numerical methods. The latter are reviewed most comprehensively by Yeung [1] and Romate [2], who classify 
the available methods of solving wave problems, discuss features of their use, estimate the effectiveness of the 
corresponding algorithms, and report some results of wave-flow calculations. Sturova [3] presents calculation 
results for plane gravity waves generated by various disturbances, including those produced by a moving 
body. Chen and Vorus [4] solved the problems of the motion of a circular cylinder above and under the water- 
air interface (the solutions were constructed in Lagrangian coordinates using potential theory) and reported 
results of calculations of wave profiles produced by motion of a cylinder from the quiescent state. Kim and 
Hwang [5] studied the nonlinear unsteady problem of the horizontal motion of a lifting profile under a free 
surface. The solution was constructed by the boundary element method in the spectral formulation. Extensive 
results of calculation for the shape of the free surface and hydrodynamic characteristics of the profile are given. 

In the present paper, we propose a numerical method of solving the problem of the horizontal motion 
of a contour at the interface between media. A numerical experiment on the evaluation of the effect of the 
problem's parameters on the flow characteristics is performed. The process of wave breaking is investigated 
in detail. The hydrodynamic responses acting on the contour are calculated. 

1. We consider the problem of the horizontal motion from the quiescent state of contour Lo(t) 
under liquid interface Lt(t). In the lower D1 and upper D2 layers, the liquid is ideal, incompressible, and 
homogeneous. The coordinate system is introduced so that the x axis coincides with the undisturbed interface 
LI(0). At the initial time, the center of the cylinder is at the point with coordinates (0 , -h ) .  In the chosen 
coordinate system, the velocity vector of the cylinder VLo(t) = (Vs , VLoy) has the form 

(-Vot/T,O),  0~<t~<T, 
VL~ = (-Vo,  0), t > T, 

which corresponds to acceleration by a linear law from the quiescent state to a certain constant velocity. 
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The velocity potential c2k(x , y, t) that describes motion of the liquid in the region Dk satisfies the 
Laplace equation 

Acpk(x, y, t) = 0, (x, y) C Dk(t) \Lo(t) ,  k = 1, 2. (1.1) 

At the interface, the following kinematic and dynamic conditions, written for points Ll(t) moving at 
velocity Vq~0(x, y, t), are satisfied: 

(9rl 
V ~ 9 1 ( x ' Y ' t )  " n l  --" V ~ 9 2 ( x ' y ' t ) " n l  "~- Ot " n l ,  (x,y)  E Ll(t); (1.2) 

G~I (X, y, ~) 0~2(X, y, t) (V~I  (2~, y, t)) 2 (Vqa2(X, y, t)) 2 
Pl Ot P2 Ot + Pl 2 -- P2 2 

- m V ~ 0 ( z ,  y, t )V~l(Z,  y, t) + p2V~o(x, y, t )V~2(z,  y, t) + @1 - p2)gy(z, t) = 0, (1.3) 

(x ,v )  �9 51 (0 ;  

the surface of the contour Lo(t) obeys the nonpenetration condition 

(v l(x, v, t) - VLo(t)). o = 0, (x,V) �9 Lo(t). (1.4) 

In (1.2)-(1.4), r l  is the radius-vector of the point (x ,y)  �9 Ll( t) ,  n j  is the normal to Lj(t)  at the point 
(x, y) �9 Lj( t )  (j = 0, 1), pk is the liquid density in the kth layer, g is the acceleration of gravity, and 0 / 0 t  is 
the derivative calculated in a moving coordinate system. 

At infinitely far points D1 and D2, the conditions of absence of disturbances of the velocities and the 
interface are satisfied: 

lim V~k(x, y, t) = 0, k = 1, 2; (1.5) 
(~,y)--.+oo 

lim y = 0, (x,y) �9 Ll(t) .  (1.6) X~-4-OO 

The initial conditions for the interface and the potential have the form 

LI(0): y = 0, x �9 ( -o r  Vqok(x, y, 0) = 0, (x,y) �9 Dk(0)\L0(0). (1.7) 

2. We reduce the initial boundary-value problem (1.1)-(1.7) for the velocity potentials ~k(x, y, t)  to 
a system of integrodifferential equations for the intensities of the singularities modeling the liquid and solid 
boundaries. For this, we place a vortex sheet with intensity 71(sl, t) (71(+or t) = 0) along the contour Ll(t)  
and a layer of sources q(s0, t) along Lo(t). Then, the complex velocity of disturbed motion of the liquid in the 
regions Dk (k = 1, 2) has the form 

2ri  z -- ~'(Sl) + ~ z - r ' (2.1) 
L~(t) Lo(t) 

�9 V ( z , t )  = 0. (2.2) 

We adopt the following assumption on the velocity V~0(x, y, t) [(z, y) �9 L1 (t)]: 

O o(z,v,t) - 
tOX Z (~y = Vl(z( ,s l) , t ) ,  Vj(z( .s l ) , t  ) = V ( z ( s j , t ) ,  j = 0, 1. (2.3) 

We note that for z ( s j  �9 Lj(t)  (j = 0, 1), the improper integrals entering expression (2.1) should be 
understood in the sense of the Cauchy principal value. 

With allowance for (2.3), we write boundary conditions (1.2)-(1.4) as 

Oz( a) 
Ot = Vl(z (s l ) , t ) ,  z ( s J  �9 Ll(t); (2.4) 

OG(sl,t) (Vl(z(sl),t)Vl(Z(Sl),t) Imz(sl) 712(81't) ) 
Ot = p• 2 - g  , z(s l)  �9 Ll(t) ,  
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Sl  

= + p . V l ~ ( a l , t )  dal, (2.5) 

Vjs(Sj,t)  = R e ( V j ( z ( s j ) , t ) e x p ( i O j ( s j ,  t))), z (s j )  E Lj(I) ,  j = 0, 1; 

q(~0,t)  
2 - I m  ((V0(z(s0), t) - V/; o (t)) exp(i00(s0, t))), (2.6) 

z(so) E Lo(t), VLo(t) = VLo, + iVro,, 

where Oj(sj , t )  is the angle between the tangent to the point z(s j )  E Lj ( t )  (j = 0, 1) and the x axis; 
p. = (pl - p2)/(pl + p2)- 

Thus, the initial boundary-value problem (1.1)-(1.7) is reduced to determining the functions 71(s], t) 
and q(s0, t) and the interface Ll ( t )  from the integrodifferential relations (2.4)-(2.6) with allowance for (2.1), 
(2.2), and initial conditions of the form 

Imz  ----- O, z ELI(O),  71(sl,O) --- q(so,O) = O. 

The pressure distribution over the contour p(s0, t), and the overall hydrodynamic loads R~ and Ry and 
the moment M about the point ZM = XM + iyM are defined by the formulas 

p ( s o , t ) -  f ( t )  = - p l  N vo~(~o, t )~o - Re(VL(t)Vo(z(so) , t ))  + 
0 

f (p(s0, t) -- f ( t ) )  exp (-iOo(so, t)) dso, (2.7) R~ iRy i I 

Lo(0 

= - f (p(s0,  t) - f ( t ) ) [ (~(s0 ,  t)  - XM) cos Oo(so, t) + (,1(so, t) -- YM) sin 00(s0, t)] &0 ,  M 
Lo(t) 

where f ( t )  is a function that depends only on time. 
3. The resulting system of integrodifferential equations (2.4)-(2.6) is nonlinear. This is due to two 

factors: the unknown functions 71(sl, t) and q(so, t) enter boundary condition (2.5) in a nonlinear manner 
and the shape of the interface Ll(t)  is unknown. In this connection, there are certain difficulties in solving 
the system obtained. 

We solve system (2.4)-(2.6) by the collocation method. In each time step tn (n = 1, 2 , . . . ) ,  we consider 
the interface L~' in a finite interval (the superscript denotes the function determined in the nth time step). We 

n n divide the contours L~ into intervals [sai_l, sli  ] (i = 1 , . . . ,  I)  and L~ into [S0j- -1 ,80j]  (j = 1 , . . . ,  J) .  In these 
,S n intervals, we choose collocation points z"(s~'/*) E L~ (s~* E [ 1i-1, s~i]) and z"(s~j) E L' d (s~j E [s0i-1, s0j]). 

We require that (2.4) and (2.5) be satisfied at the points zn(s'~ *) (i = 1 , . . . , I )  and the nonpenetration 
condition on the contour (2.6) be satisfied at the points zn(s~j) (j = 1 , . . . ,  J) .  The system is then solved 
by two iterative procedures. One of these involves integration with respect to t ime of Eqs. (2.4) and (2.5) 
using an explicit scheme. In this case, in each time step tn (n = 1, 2 , . . . ) ,  we obtain the value of the function 
Gn(s'~ *) and the shape of the interface z"(s l  ~*) E Lr~. The other iterative procedure is employed to solve, in 
each time step, the system of linear algebraic equations obtained by discretization of the relations 

" "* o c - ( s ? * )  
7 1 ( S l i )  or - p, Vls(Sl i ) _ _  , zn(s'~;) E L 1, i = 1 .. I, 

2 Os'~ ' "' 

q"(s~j) 
T - Xm ( ( ~ ( z " ( 4 i ) )  - V~o) e• z"(4S) e L~, i = 1 , . . . ,  a. 

The discretization is performed by the high-order slab method [6]. For this, the interface L~ in the 
ith interval [s~i_l,s~/] (i = 1 , . . . , I )  and the contour L~ in the j t h  interval [s0/-1,s0/] (j = 1 , . . . ,  J)  are 
approximated by a parabola, and 3'~(s]') and qr'(so) in the same intervals are approximated by a linear 
function. Solving the system of linear algebraic equations for the values of the functions 3'~'(s~) and q'~(so) at 
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TABLE 1 

0.05 

1.0 

Fr --- 1.4142 

21.92 
23.78 

the ends of the intervals, from (2.1) we obtain the values of Vn(z) at the points zn(s~j) E L'~, and then from 
(2.7) we obtain the overall hydrodynamic characteristics. 

4. The method developed previously is employed to solve the problem of the acceleration of a circular 
cylinder of radius R under the free surface of a heavy liquid (p. = 1). The dimensionless parameters of 
the problem are the Froude number Fr --- Uo/x/gR, time 7 = tUo/R (the time until which the cylinder is 
accelerated T1 = TUo/R), and the distance from the center of the cylinder to the undisturbed free surface 
h/R. The following parameter values are selected: h/R = 2, Fr = 0.5, 1, 1.4142, T1 = 0.05, and 1. 

The computation domain was considered on the segments [-25, 25] for Fr = 0.5, [-30, 30] for Fr = 1 
and [-35, 35] at Fr = 1.4142. The number of nodes was 500, 600, and 700, respectively, on the free surface 
and 60 on the contour. The waves reflected from the boundaries of the computation domain were eliminated 
by introduction of a damping layer on segments of length 5R located at the ends of the calculation interval 
according to the procedure described in [7]. System (2.4), (2.5) was integrated with respect to t ime by the 
Runge--Kutta-Fellberg method of the fifth order of accuracy [8]. The time step A r  was varied dynamically 
from 0.05 to 0.01. The value of the derivative c3G(sl, t)/CgSl, the slope of the interface 61(s1,~) to the x axis, 
and the integrals entering the  expressions for hydrodynamic loads (2.7) were calculated by means of cubic 
splines. The short-wave instability originating on the free surface was eliminated by the filtration procedure 
developed in [9]. The system of linear algebraic equations was solved by the overrelaxation method. To increase 
the calculation accuracy from the time a vertical segment appears on the free surface until complete breaking 
of the waves r. ,  we employed a redivision using parametric splines. 

The process of solution of the problem was checked by means of the integral energy conservation law. 
Under the above-mentioned assumptions on the number of nodes and magnitude of the step A t ,  the energy 
variation during the computing did not exceed 1%. 

Table 1 gives the values of ~'. for which the accelerated motion of the circular cylinder from the 
quiescent state (h/R = 2) leads to wave breaking, and reflects the effect of the quantity T1 on the time r,  for 
various Froude numbers. The natural result is obtained: a decrease in the acceleration time leads to stronger 
disturbances and earlier t ime of breaking. An increase in the Froude number Fr leads to an increase in r.. 

Figures 1 and 2 show the calculated shape of the free surface, and Fig. 3a and b shows the coefficients 
of wave drag Cz = 2R~/plRU 2 and lifting force Cy = 2Rv/plRU2o, respectively, for T1 = 1 and Fr = 0.5 
and 1. The free surface behaves as follows: initially, an elevation produced by acceleration forms ahead of the 
contour, and then it begins to decrease and, simultaneously, a surge from the hollow behind the cylinder forms. 
Further, a vertical segment on the free surface forms, after which wave breaking occurs. The energy of the 
breaking wave is replenished owing to the decrease in the free surface in the generated hollow. This breaking 
pattern is observed for all Froude numbers specified above. The wave drag increases with time, and this is 
typical evidence for nonstationarity of the flow produced by a moving body [10]. The lifting force is negative 
and nonmonotonic over the entire interval of motion. It should be noted that for Fr = 0.5 there is a segment 
of positive lifting force, which corresponds to the buoyancy force acting on the cylinder. Another interesting 
feature in the behavior of the hydrodynamic loads is the absence of monotonicity in a small neighborhood 
r = 1, which is explained by discontinuity of the acceleration. There are a number of explicit analytical 
formulas confirming this fact (see, for example, [11]). 
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